
Received: 23 August 2021 Revised: 16 January 2022 Accepted: 28 January 2022

DOI: 10.1002/elsc.202100108

RESEARCH ARTICLE

bletl - A Python package for integrating BioLector
microcultivation devices in the Design-Build-Test-Learn
cycle

Michael Osthege1,2 Niklas Tenhaef1 Rebecca Zyla1 Carolin Müller1,2

Johannes Hemmerich1 WolfgangWiechert1,3 Stephan Noack1

Marco Oldiges1,2

1Forschungszentrum Jülich GmbH,
Jülich, Germany
2Institute of Biotechnology, RWTH
Aachen University, Aachen, Germany
3Computational Systems Biotechnology
(AVT.CSB), RWTH Aachen University,
Aachen, Germany

Correspondence
Marco Oldiges, Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany.
Email: m.oldiges@fz-juelich.de

Michael Osthege and Niklas Tenhaef
contributed equally to this study.

Funding information
Bundesministerium für Bildung und
Forschung, Grant/Award Number:
031B0463A; Deutsche
Forschungsgemeinschaft (DFG, German
Research Foundation), Grant/Award
Number: 491111487

Abstract
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for
tasks of microbial phenotyping and bioprocess characterization and provide a
wealth of online process data in a highly parallelized manner. Such datasets
are difficult to interpret in short time by manual workflows. In this study, we
present the Python package bletl and show how it enables robust data analyses
and the application of machine learning techniques without tedious data pars-
ing and preprocessing. bletl reads raw result files from BioLector I, II and Pro
devices to make all the contained information available to Python-based data
analysis workflows. Together with standard tooling from the Python scientific
computing ecosystem, interactive visualizations and spline-based derivative cal-
culations can be performed. Additionally, we present a new method for unbi-
ased quantification of time-variable specific growth rate 𝜇𝑡 based on unsuper-
vised switchpoint detection with Student-t distributed random walks. With an
adequate calibration model, this method enables practitioners to quantify time-
variable growth rate with Bayesian uncertainty quantification and automatically
detect switch-points that indicate relevant metabolic changes. Finally, we show
how time series feature extraction enables the application of machine learning
methods to MBR data, resulting in unsupervised phenotype characterization.
As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets
comprising a variety of growth/DO/pH phenotypes.

KEYWORDS
BioLector, feature extraction, growth rate, microbial phenotyping, uncertainty quantification

Abbreviation: bletl, BioLector Extract, Transform, Load; BS, backscatter; DBTL, Design - Build - Test - Learn; DO, Dissolved Oxygen; FAIR,
Findability, Accessibility, Interoperability, Reusability; IPTG, Isopropyl-𝛽-D-thiogalactopyranosid; MAP, maximum a-posteriori; MBR,
microbioreactor; MCMC, Markov-chain Monte Carlo; NUTS, No-U-Turn Sampler; PCA, Principal Component Analysis; t-SNE, t-distributed
Stochastic Neighbor Embedding

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Engineering in Life Sciences published by Wiley-VCH GmbH

242 www.els-journal.com Eng Life Sci. 2022;22:242–259.

https://orcid.org/0000-0002-2734-7624
https://orcid.org/0000-0002-9375-4156
https://orcid.org/0000-0002-6277-1009
https://orcid.org/0000-0002-9786-6315
https://orcid.org/0000-0001-8501-0694
https://orcid.org/0000-0001-9784-3626
https://orcid.org/0000-0003-0704-5597
mailto:m.oldiges@fz-juelich.de
http://creativecommons.org/licenses/by/4.0/
http://www.els-journal.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Felsc.202100108&domain=pdf&date_stamp=2022-03-01


OSTHEGE et al. 243

1 INTRODUCTION

The development of innovative bioprocesses is nowadays
often carried out in aDesign - Build - Test - Learn 31 (DBTL)
cycle [1], where fast iterations of this cycle are desired to
shorten development times and therefore save costs. This
acceleration can be enabled by modern genetic engineer-
ing tools, lab automation and standardized data analysis
pipelines. One aspect in the “Test” part of the DBTL cycle
of a bioprocess is the cultivation of the microorganisms to
be tested. This is often performed in microbioreactor sys-
tems, since they provide a good balance between adequate
throughput and scalability of the results to laboratory scale
bioreactors as the gold standard [2, 3].
A typical microbioreactor system will provide transient

monitoring of biomass formation, dissolved oxygen, pH,
and fluorescence. Usually, the researcher has access to
additional environmental data such as temperature, shak-
ing or stirrer frequencies, humidity, and gas atmosphere.
Analyzing this heterogeneous,multi-dimensional data in a
quick and thoroughmanner can be challenging, especially
since vendor software often covers only a limited amount
of use cases.
From our experience, most researchers try to alleviate

such problems by employing spreadsheets of varying com-
plexity, available with various software solutions. While
presenting an easy way for simple calculations and visu-
alizations, extensive analysis of the data quickly results in
hardlymaintainable documents, which are challenging for
colleagues to comprehend, error-prone and easy to break.
Most importantly, such multi-step manual data transfor-
mations do not comply with the FAIR data principles,
because it is often not accessibly documentedwhich opera-
tions were applied. In contrast, our bletl package directly
addresses the accessibility aspect and creates incentives to,
for example, retain the original data.
Automated data analysis pipelines solve this problem

by removing the repetitive and error-prone manual work-
flows in favor of standardized workflows defined in code.
Such workflows offer many advantages, if done correctly:
(a) data processing is clearly understandable and doc-
umented; (b) every step is carried out for every input
data file in the same way, guaranteeing the integrity and
reproducibility of the results; (c) data processing can be
autonomously started after data generation; and (d) such
a pipeline can be run on remote systems, which is espe-
cially useful for computational demanding calculations.
Such data analysis pipelines are routinely used, for exam-
ple, for sequencing data [4], but seldom used for micro-
bioreactor data. While multiple Python packages for work-
ing with microplate reader data can be found on PyPI
[5, 6], we would like to emphasize that microplate read-
ers are typically not designed for cultivation and on-line

PRACTICAL APPLICATION

The bletl package can be used to analyze micro-
bioreactor datasets in both data analysis and
autonomous experimentation workflows. Using
the example of BioLector datasets, we show that
loading such datasets into commonly used data
structures with one line of Python code is a sig-
nificant improvement over spreadsheet or hand-
crafted scripting approaches. On top of established
standard data structures, practitioners may con-
tinue with their favorite data analysis routines, or
make use of the additional analysis functions that
we specifically tailored to the analysis of micro-
bioreactor time series.
Particularly our function to fit cross-validated
smoothing splines can be used for on-line sig-
nals from any microbioreactor system and has the
potential to improve robustness and objectivity of
many data analyses. Likewise, our random walk
based 𝜇𝑡 method for inferring growth rates under
uncertainty, but also the time-series feature extrac-
tion may be applied to on-line data from other cul-
tivation systems as well.
Our package can be installed from PyPI, its code
is available on https://github.com/JuBiotech/bletl
and extensive documentation online at https://
bletl.readthedocs.io.

measurement. Furthermore, most of these implemen-
tations are tailored to specific experimental designs or
research applications, making them less useful for appli-
cation in other fields.
Automated data analysis opens up possibilities for at-

line analysis and subsequent intervention during an exper-
iment: CruzBournazou et al. report a framework for online
experimental redesign of 10 mL 2mag microbioreactors
using a data pipeline implemented in MATLAB [7]. Prior
work employing at-line data processing from the BioLec-
tor platform includes Jansen et al. [8] where a Python-
based process control system was employed to control pH
and enzyme addition with a liquid handling robot, but
the code was not released alongside the publication. Hem-
merich et al. [9] published MATLAB scripts for growth
rate calculation from BioLector data, but the code acts on
the XLSX file format that cannot be obtained without a
human-in-the-loop. A search for “BioLector” on PyPI, the
most popular package registry in the Python ecosystem,
revealed two Python packages BioLectorPy for plotting,
and getgrowth for growth rate calculation from BioLector

https://github.com/JuBiotech/bletl
https://bletl.readthedocs.io
https://bletl.readthedocs.io


244 OSTHEGE et al.

data, but the corresponding code is not in a public reposi-
tory. These examples show that while automatable parsing
and processing of BioLector data have been reported in lit-
erature, all prior work is tailored to specific use cases and
neither unit-tested nor universally applicable.
In this study, we introduce bletl as a first-of-its-kind

open-source Python package for reliable standalone and
at-line parsing and analysis of BioLector microbioreactor
data. The name bletl is inspired by the fact that it sim-
plifies the implementation of extract, transform, load data
processing workflows specifically for BioLector datasets. It
is capable of parsing raw BioLector data without involv-
ing vendor software, making necessary calibrations for
fluorescent-based measurement of pH and dissolved oxy-
gen, and presenting all measurement, environmental and
meta data in the easily accessible, DataFrame format from
the popular pandas library [10, 11]. Currently, bletl is
designed to parse data from the devices BioLector I, II,
and Pro manufactured by Beckman Coulter Life Sciences,
but its general design and methods can be applied also
for other devices. Specifically, its analysis submodules are
built on top of standard data structures from the Python
ecosystem, thereby providing the userwith generally appli-
cable data analysis routines for high-resolution biologi-
cal time series data. For example, we provide functions
for data smoothing by cross-validated spline approxima-
tion, growth rate analysis and time series feature extrac-
tion. Building on top of our recent work on uncertainty
quantification and calibration modeling [12], we intro-
duce a new method for Bayesian analysis of time-variable
specific growth rate and benchmark the objectivity of
the method on a synthetic dataset in comparison with
commonly used alternative growth rate calculation meth-
ods. In addition to an extensive documentation and auto-
mated software tests, we provide application examples on
a dataset without biological surprises, such that it is well
suited for method understanding. With bletl , scientists
using microbioreactors have a powerful tool to make their
data analysis less cumbersome and error-prone, while they
can directly benefit from state-of-the-art machine learning
techniques.

2 MATERIALS ANDMETHODS

2.1 Core package

The bletl package includes the data structures that are
common to datasets originating from BioLector I, II and
Pro microbioreactors. Parsing of raw data is deferred to
parsers that may implement logic that is specific to a cer-
tain BioLector model or file type. Core functionality and
analysis methods are extensively tested by automated test-

ing pipelines for Python versions 3.7, 3.8, and 3.9. Support
for Python 3.10 will be added as soon as all dependencies
are compatible.

2.1.1 Parsing and data structures

Parsing of raw data typically begins with a call to the
bletl.parse function, which first determines the file type
from its content. The parsing procedure does not only
ingest the data into accessible Python data structures, but
also takes care of re-naming tabular data columns to a
standardized naming scheme and type-casting values to
integer, float, or string types. After the BioLector model
and file type version are identified, a matching parser is
selected, thereby enabling a plug-in system for special-
ized parsers for different file type versions or the new
BioLector XT device. The parsing logic is highly depen-
dent on the BioLectormodel, but generally follows the pat-
tern of first separating the file header of metadata from
the table of measurement data. Logical blocks of informa-
tion, such as the table of filtersets are then parsed into
pandas.DataFrame objects. These tabular data structures
are collected as attributes on a bletl.BLData object which
is returned to the user. The BLData class is a Python dictio-
nary data type with additional properties and methods.
Via its properties, the user may access various DataFrame
tables of relevant metadata, including the aforementioned
tables of filtersets, comments or environment parameters
such as chamber temperature or humidity. Users of pro-
totype BioLectors, or the new BioLector XT are invited to
contribute parsers to https://github.com/JuBiotech/bletl.
AUMLdiagramof the relevant classes is shown inFigure 1.
Key-value pairs in the BLData dictionary are the

names of filtersets and corresponding FilterTimeSeries
objects. This second important type from the bletl pack-
age hosts all measurements that were obtained with the
same filterset. Like the BLData class it provides additional
methods such as FilterTimeSeries.get_timeseries
for easy access of time/value vectors.

2.2 Analysis methods

In submodules of the bletl package, various functions are
provided to facilitate higher-throughput and automated
data analysis from bioprocess timeseries data.
One often used feature is the find_do_peak function

that implements a Dissolved Oxygen (DO)-peak detection
heuristic similar to the one found in them2p-labsRoboLec-
tor software. The DO-peak detection algorithm finds a
cycle number corresponding to a DO rise, constrained by
user-provided threshold and delay parameters.

https://github.com/JuBiotech/bletl


OSTHEGE et al. 245

F IGURE 1 UML diagram of relevant classes in the bletl package. Device-specific parsers are implemented by inheriting from a
common base class that defines the interface needed for integration with the bletl.parse function (top). Data structures for an entire
BioLector dataset (BLData) and data from one filterset (FilterTimeSeries) are used to group relevant attributes and provide methods for
convenient data access and summarization. Results of the 𝜇𝑡 method are managed as GrowthRateResult objects, providing various attributes
needed for visualization. Custom feature extraction methods, for example to extract model-based parameters like in [13], may be implemented
by inheriting from the Extractor base class

Additional, more elaborate analysis functions were
implemented to allow for advanced data analysis or exper-
imental control.

2.2.1 Spline approximations

To accommodate for the measurement noise in on-line
measured time series, various smoothing procedures may

be applied to the raw signal. A popular choice for interpo-
lation are spline functions, specifically smoothing splines
that can reproduce reasonable interpolations without
strong assumptions about the underlying relationship.
With bletl.get_crossvalidated_smoothing_spline
we implemented a convenience function for fitting
smoothing splines using either scipy or csaps [14, 15]
for the underlying implementation Code 1. Both smooth-
ing spline implementations require a hyperparameter that



246 OSTHEGE et al.

influences the amount of smoothing. Because the choice
of the smoothing hyperparameter strongly influences the
final result we automatically apply stratified k-fold cross-
validation for determining its optimal value. The imple-
mentation can be found in the code repository of the bletl
project [16].

Code 1: Code to obtain a cross validated smoothing
spline for pH data
The user must provide vectors for time and value of a
time series to which the spline will be fitted (line 1). A
spline is then obtained in line 2, while specifying the pre-
ferred spline method. The returned object behaves like
a SciPy spline and can, for example, be called on a vec-
tor of high-resolution time points to evaluate interpolated
values.

2.2.2 Growth rate analysis

A “calibration-free” approach to calculate time-variable
specific growth rate 𝜇(𝑡) (1) relies on the previously intro-
duced spline approximations, combined with the popular
assumption of a linear backscatter 𝑌𝐵𝑆 versus biomass 𝑋
relationship (2).

𝜇(𝑡) =
𝑑𝑋
𝑑𝑡

⋅
1

𝑋(𝑡)
=
𝑋̇(𝑡)

𝑋(𝑡)
(1)

𝑌𝐵𝑆(𝑡) = 𝑎 ⋅ 𝑋(𝑡) + 𝑏

⇔ 𝑋(𝑡) =
𝑌𝐵𝑆(𝑡) − 𝑏

𝑎

(2)

Substituting the biomass𝑋(𝑡) in (1), the slope parameter
𝑎 cancels out such that only a “blank” 𝑏 and the measured
backscatter𝑌𝐵𝑆(𝑡) are needed for a specific growth rate cal-
culation (3).

⇔ 𝜇(𝑡) =
1
𝑎
⋅
𝑑(𝑌𝐵𝑆(𝑡) − 𝑏)

𝑑𝑡
⋅

𝑎

𝑌𝐵𝑆(𝑡) − 𝑏

⇔ 𝜇(𝑡) =
1

𝑌𝐵𝑆(𝑡) − 𝑏
⋅
𝑑(𝑌𝐵𝑆(𝑡) − 𝑏)

𝑑𝑡

(3)

Finally, the backscatter curve 𝑌𝐵𝑆(𝑡) can be approxi-
mated by a smoothing spline 𝑆YS,blanked(𝑡) to obtain a dif-
ferentiable function (4).

𝜇(𝑡) =
𝑆̇YS,blanked(𝑡)

𝑆YS,blanked(𝑡)
(4)

An alternative approach is to construct a generative
model of the biomass growth. In essence, the time series
of observations is modeled as a deterministic function of
an initial biomass concentration 𝑋0 and a vector of spe-
cific growth rates 𝜇𝑡 at all time points where observations
were made. The structure of this model assumes expo-
nential growth between the time steps, which is a robust
assumption for high-frequency time series such as the ones
obtained from BioLector processes.

⇀
𝑋𝑡 = 𝑋0 ⋅ 𝑒

cumsum(
⇀
𝜇𝑡⊙

⇀
Δ𝑡)

where

cumsum(
⇀
𝑥) ∶=

𝑇∑
𝑖=0

𝑥𝑖

⇀
Δ𝑡 = differences between time points

(5)

The convenience function bletl.growth.fit_mu_t
creates the generative𝜇𝑡model (5) fromuser-provided vec-
tors of observation time points 𝑡⃗, backscatter values 𝑦 and
a calibration model built with the calibr8 package. The
calibration model used for this study is based on an asym-
metric logistic function of the log-biomass concentration.
Most importantly it describes the distribution of backscat-
ter observations that can be expected from an underly-
ing biomass concentration, thereby enabling uncertainty
quantification that accounts for precision of the measure-
ment method. A thorough introduction can be found in
[12], but generally a calibration model can be constructed
in three steps:

1. Acquisition of calibration data, preferably singular
replicates at a high number of concentrations ranging
three orders of magnitude up to 2−3× the biomass con-
centration expected in experiments.

2. Definition of the model class and parameter estima-
tion.

3. Quality checks and iteration over 1-3 until the quality
of the data and model is satisfactory.

For calibrations of biomass/backscatter relationships
in the BioLector system we recommend the procedure
described in the methods section of [12].
To contrast this approach from the smooth, continuous

𝜇(𝑡) from (4) we use the 𝜇𝑡 notation to underline that the
approach discretizes the growth rate into a step function.
Themodel is built with the probabilistic programming lan-
guage PyMC [17, 18] and an optimal parameter set, the



OSTHEGE et al. 247

F IGURE 2 Switchpoint detection with a Student-t random walk. A microbial growth curve with fluctuating specific growth rate 𝜇may
be discretized into segments of exponential growth with constant growth rate (solid lines). Modeling such a sequence of growth rates with a
random walk assigns prior probabilities to every value of 𝜇 ∈ 𝜇, centered on the values of previous iterations (A, colored areas). When fitting
the model these prior probabilities “pull” subsequent values in 𝜇 towards each other, leading to a smoothing and counteracting overfitting.
Using a fat-tailed Student-t distribution for the random walk prior, the penalty for large jumps is less extreme compared to a Normal
distribution, thereby allowing for jumps in the random walk (5th segment)

maximum a-posteriori (MAP) estimate, is found automat-
ically by optimization. Additionally, the user may decide
to performMarkov-chain Monte Carlo (MCMC) sampling
using advanced sampling algorithms such as No-U-Turn
Sampler (NUTS) from the PyMC [17] package to infer prob-
ability distributions for the model parameters 𝑋0 and 𝜇𝑡.
Both MAP and MCMC parameter estimation methods are
based on the log-posterior probability of the model. For
MAP estimation the PyMC framework obtains gradients
by auto-differentiation and employs the L-BFGS-B mini-
mization algorithm from SciPy. Whereas MAP estimation
yields one point in the parameter space with relatively lit-
tle computational effort, MCMC parameter estimation is
more expensive, but yields thousands of points (samples)
that approximate the joint posterior probability distribu-
tion. For the application shown here, the most relevant
advantages of MCMC parameter estimation are the uncer-
tainty quantification of model parameters and the more
reliable convergence compared to optimization. For amore
comprehensive introduction to Bayesian methods we rec-
ommend [19].

In the generative 𝜇𝑡 model, the vector of growth rates
is modeled with either a Gaussian or Student-t distributed
random walk (Figure 2). This does not only result in a
smoothing of the growth rate vector, but enables addi-
tional flexibility with respect to switchpoints in the growth
rate. A drift_scale parameter must be given to config-
ure the random walk with a realistic assumption of how
much growth rate varies over time. Small drift_scale
corresponds to the assumption that growth rate is rather
stable, whereas large drift_scale allows the model to
describe a more fluctuating growth rate distribution. On
the technical level, the drift_scale parametrizes the
width of the Student-t random walk prior (6), pulling the
values of the random walk closer together, since the prior-
probability is a term in the log-posterior probability of the
model.

log
(
𝑝prior

(⇀
𝜇𝑡
))

=
𝑇−1∑
𝑖=0

logpdfStudentT

⋅
(⇀
𝜇𝑡,𝑖+1 ∣

⇀
𝜇𝑡,𝑖 , drif t_scale, 𝜈

)
(6)



248 OSTHEGE et al.

Additionally, the user may provide previously known
time points at which growth rate switches are expected.
Examples of such switchpoints are the time of induction,
occurrence of oxygen limitation or the time at which the
carbon source is depleted. If 𝜇𝑡 is described by a Student-
t random walk, switchpoints can be detected automati-
cally by inspecting the prior probabilities of the estimated
growth rate in every segment (Figure 2). Our implementa-
tion automatically classifies elements of 𝜇 as switchpoints
as soon as their prior probability is < 1 %.
While there has been prior work on using randomwalks

and cumulative sums for outlier detection [20–22], we are
not aware of prior work using Student-t random walks for
the unsupervised detection of changepoints in time series
data. The general idea of modeling exponential growth
from a random-walk of the growth rate was inspired by
early versions of the “Rt.live” model of COVID-19 effective
reproduction numbers [23].

2.2.3 Feature extraction

The bletl.features submodule implements functions
for the automated extraction of both biologically and
statistically motivated time series features. An abstract
Extractor class may be inherited to implement feature
extraction of characteristic features such as DO peaks.
Additionally, our TSFreshExtractoruses the open source
Python package tsfresh [24] to extract hundreds of fea-
tures fromvariable length time series automatically. Exam-
ples of such features are times of min/max values, quan-
tiles, autocorrelation lags or fourier transform coefficients.
Starting from a bletl.BLData object con-

taining one or more FilterTimeSeries, the
bletl.features.from_bldata function extracts features
from multiple filtersets using a user-specified mapping of
Extractor objects. Optionally, a dictionary of well-wise
cycle numbers can be passed to truncate time series to the
relevant cycles. The results are returned as a DataFrame

for maximal compatibility with downstream analysis
operations. For details on the implementation we refer to
the code and documentation [16, 25].
Code 2 shows how the function is applied to our demon-

stration data set. The resulting DataFrame comprised 2343
feature columns for each of the 48 wells in the input data.
Feature columns with NaN,±∞ entries or without variabil-
ity in their values were dropped, resulting in 1282 features
available for further analysis.

Code 2: Code to run feature extraction from three fil-
tersets
The name of each filterset is mapped to a list of
Extractors that may include user-defined feature extrac-
tion implementations. The last_cycle keyword argu-
ment can be used to pass a mapping of well IDs to the last
relevant cycle numbers. Extracted features are returned in
the form of a pandas.DataFrame

2.2.4 Visualization by t-SNE

Starting from features extracted with bletl.features
we applied the t-SNE technique to find a two-dimensional
embedding for the visualization of local structure in
the dataset [26]. The general idea behind t-SNE is to
find a low-dimensional arrangement of records from
a high-dimensional dataset, such that the dissimilarity
(Kullback-Leibler divergence) between the two distribu-
tions is minimized [26]. The method is frequently used for
visualization of local structure in complex datasets such
as huge collections of images, single-cell transcriptomics
records, or high-dimensional latent representations of
word embeddings obtained from neural networks [26–28].
Examples of t-SNE visualizations are shown in
Section 3.4.
For the application of t-SNE to BioLector time series,

we cleaned extracted features such that features with NaN
values, or without diversity were removed. After feature-



OSTHEGE et al. 249

cleaning, the t-SNE implementation from scikit-learn was
applied with a perplexity setting of 10 and initialization by
PCA. The corresponding code can be found in the Support-
ing material on GitHub [29].

2.3 Media and cultivation conditions

The dataset presented as an application example in this
study was obtained in an automated cultivation work-
flow on the previously described microbial phenotyp-
ing platform. 48 cultures of Corynebacterium glutam-
icum ATCC 13032 harboring the pPBEx2[30]-based plas-
mid pCMEx8-NprE-Cutinase (GenBank accessionnumber
OL456171) were cultivated in CGXII medium (recipe as in
[12]) with different carbon sources. Carbon sources were
prepared as C-equimolar, random combinations of 8 𝑔𝐶

𝐿
glucose, fructose, maltose, sucrose, gluconate, lactate, glu-
tamate or myo-inositol. For every well except A01, where
glucose was the sole carbon source, three different carbon
sources were chosen at random. A total of 140 µL of C-
equimolar carbon source stock were added to each well.
The 140 µL were split into seven parts of 20 µL and such

that at least one part was used for each selected carbon
source and the remaining four parts were assigned ran-
domly. The resulting media composition in terms of pipet-
ted volume, and carbon mass per microliter can be found
in Section 4.1.
Cultivation was done as previously described [31].

Briefly, 800 µL CGXII medium were inoculated to an opti-
cal density at 600 nm of 0.2. Cultures were grown in a
MTP-48-BOH 1 FlowerPlate in a BioLector Pro (both Beck-
man Coulter Life Sciences, USA) at 1400 rpm, 30 ◦C and
≥85% humidity. Expression was induced autonomously
with 10 µL isopropyl-𝛽-D-thiogalactopyranosid (IPTG)
(final concentration 100 µM) when cultures reached a
backscatter value of 5.82, corresponding to approximately
4

𝑔𝐶𝐷𝑊

𝐿
. Culture from each well was harvested 4 h after

induction.

3 RESULTS AND DISCUSSION

3.1 Basic visualization workflow

Every analysis begins with loading data into a structure
that can be used for further analysis. In the case of a
BioLector experiment, the data are multiple tables that
hold information about filtersets, environment variables
such as temperature or humidity, as well as the well-wise
measurements. In most cases the result files already con-
tain relevant meta information such as lot number or pro-
cess temperature and parsing them with bletl comes
down to a single line of Python (Code 3).

Code 3: Parsing of a BioLector result file
The bletl.parse function automatically determines the
file type (BioLector I, II or Pro) and applies calibration of
optode measurements based on lot number and temper-
ature from the file. Optionally, lot number and tempera-
ture, or calibration parameters may be passed to override
the values from the file. The function can also process a list
of result file paths and automatically concatenate them to
a single BLData object.

The bletl.BLData type is a dictionary-like data struc-
ture into which results are loaded. It has additional prop-
erties through which process metadata andmeasurements
that are not tied to individual wells can be obtained. Its
text representation, which appears when the object is dis-
played in an interactive Jupyter notebook session shows
the names of filtersets and the amount of data they con-
tain (Code 3).
Elements in the BLData object are the

FilterTimeSeries, that contain the well-wise mea-
surements. The simplest way to access the time
series of a particular filterset and well is via the
BLData.get_timeseries(well, filterset) or
FilterTimeSeries.get_timeseries(well) meth-
ods. Optionally, the user may pass cycle number via the
last_cycle keyword-argument of get_timeseries to



250 OSTHEGE et al.

TABLE 1 Excerpt of sampling event log

well Timestamp Time Cycle Volume Supernatant_well
A01 2020-07-21T08:10:04.721Z 13.076466 61 −950 H01
A02 2020-07-21T07:05:04.299Z 11.993016 56 −950 G01
A03 2020-07-21T08:10:04.786Z 13.076485 61 −950 F01
A04 2020-07-21T08:10:04.841Z 13.076500 61 −950 E01
A05 2020-07-21T06:26:17.384Z 11.346651 53 −950 D01

F IGURE 3 Interactive plot of well-wise measurements. A plot_custom function, defined in lines 1-17 takes a comma-separated text of
well IDs and the name of a filterset as parameters for the visualization. In line 4 it iterates over the well IDs to create lines plots of the
measurements, passing the number of the last relevant cycle from the event log (Table 1) to truncate the data. Line 21 passes the list of
filtersets in the dataset (Code 3) as options for the fs keyword-argument of the plotting function, thereby populating the dropdown menu

retrieve only the data up to that specific cycle number.
This is useful in situations where wells were sampled
and might only be analyzed up to the sampling time
point.
In the dataset presented here, cultures were induced

and sampled by a robotic liquid handler. Induction was
triggered at-line based on latest backscatter observa-
tions and sampling was performed 4 h after the induc-
tion events Section 2.3. The metadata of these induc-
tion and sampling events were logged into an XLSX file
and loaded into a pandas.DataFrame for the analysis
Table 1.
The meta information about induction and sampling

events is important for the analysis, because backscatter,
pH and DO observations made after a well was sacrifice-
sampled must be truncated before analysis or visualiza-
tion.

With the data structures provided by our bletl pack-
age, the data analysis workflow for a BioLector experiment
is no different to any standard data analysis performed
with Python. Such analyses are often driven by interac-
tive exploration of the data. This is facilitated by interac-
tive plots using helper functions from, for example, the
ipywidgets library. Code 4 and Figure 3 show the code
and resulting interactive plot of measurement results from
a BioLector dataset. The ipywidgets library is used to
wrap a plotting function and create interactive input ele-
ments for selecting the filterset and wells to show.
Code 4: Use of bletl and ipywidgets to generate an
interactive plot
By using the function get_timeseries, measurements of
specified wells and filtersets are extracted from the dataset.
The parameter last_cycle is used to truncated the vec-
tors according to the sampling time point.



OSTHEGE et al. 251

3.2 Splines for time series smoothing
and derivatives

Optical on-line measurements as those performed by the
BioLector are inevitably subject to measurement noise.
While the measurement noise of DO and pH signals in the
BioLector II/Pro system was greatly reduced compared to
the BioLector I model, it still requires special attention in
subsequent data analysis procedures. Particularly in auto-
mated at-line decision making such as triggered induc-
tion or sampling, measurement noise can cause problems
with threshold-based heuristics. With noisy on-line sig-
nals, such as optodemeasurements in BioLector I datasets,
smoothing splines can yield more accessible visualizations
and allow for finer-grained comparisons. Furthermore, the
slope of the signals may be used for more sophisticated
analysis or decisions.

For at-line triggers based on such noisy process values,
a smoothing of the signal can increase the reproducibil-
ity of detecting, for example, a pH threshold. At the same
time, the slope of process values often gives more process
insight compared to absolute values alone. For example, a
dissolved oxygen tension of 60 % alone is not very mean-
ingful, but the observation of a strong positive slope tells
the process engineer that the microbes might grow with
reduced oxygen uptake rate. The calculation and visualiza-
tion of pH and DO slopes is therefore an important tool for
process data analysis.
Splines are a popular choice for both smoothing and

derivative calculation, because they make few assump-
tions about the data and are available in most stan-
dard data analysis software. There are however mul-
tiple flavors of smoothing splines and they come with
a smoothing parameter whose value has a consider-



252 OSTHEGE et al.

F IGURE 4 Splines fitted to pH and DO time series. Both spline methods “us” (blue) and “ucss” (orange) were applied to
measurements of pH (A) and DO (C). The resulting reconstruction/interpolation is largely identical (A, C) with most notable differences
between the methods at the start/end, as well as their derivatives (B, D), where the “ucss”method has considerably more wiggly derivatives.
With a zoomed-in time axis (gray area in C) the bottom row (E, F) shows extrapolations (dotted lines) of splines fitted to data subsets of
different length (solid lines). The “ucss”method extrapolates in straight lines, whereas the “us”method extrapolates with a curvature

able effect on the results. In bletl.splines we imple-
mented a convenience function that automatically per-
forms k-fold cross-validation on the smoothing parameter
of either a UnivariateSpline cubic spline from scipy or
a UnivariateCubicSmoothingSpline from csaps (cf. Sec-
tion 2.2.1).
In Figure 4 the two spline methods were applied to

pH and DO time series of well A01 from our demonstra-
tion dataset. Both smoothing spline methods find inter-
polations (solid lines) of the raw data that are almost
indistinguishable. Their 1st derivative however reveals that
the UnivariateCubicSmoothingSpline (ucss) from the
csaps package is much more wiggly compared to the
UnivariateSpline (us) from SciPy.
The bottom row shows a comparison of both meth-

ods in a simulated at-line situation where the DO time
series grows point by point at the time of the charac-
teristic substrate-depletion DO-peak. In this situation the
“us” method produces strong alternating positive or neg-
ative slopes and curved extrapolation at the end of the
curve. In contrast, the splines obtained with the “ucss”

method extrapolate with an (almost) constant slope. Tak-
ing both scenarios into account, the choice between the
“us” and “ucss” depends on the use case. As a rule
of thumb, “us” is more suited when steady derivatives
are desired, whereas the more stable extrapolation of the
“ucss” splines should be preferred for at-line applications.

3.3 Growth rate and timeseries analysis

Most cultivations in microbioreactors such as the BioLec-
tor are conducted to extract key performance character-
istics of the bioprocesses from the on-line measurements.
One such performance indicator is the specific growth rate
𝜇. In applications where unlimited exponential growth
is observed, a constant maximum specific growth rate
𝜇𝑚𝑎𝑥 can be calculated by regression with an exponen-
tial function [9]. Many processes however do not ful-
fill this assumption and require a more detailed analysis
with time-variable specific growth rate. Unlimited expo-
nential growth may be terminated by nutrient limitation,



OSTHEGE et al. 253

or the characteristics of strain and cultivation media may
lead to multiple growth phases. For example, overflow
metabolism of E. coli growth on glucose can lead to an
accumulation of acetic acid which is metabolized in a sec-
ond growth phase. Accordingly, switchpoints in growth
rate can indicate limitations, changes inmetabolismor reg-
ulation.
From temporally highly resolved backscatter observa-

tions combined with a detailed biomass/backscatter cor-
relation model, variable specific growth rate can be calcu-
lated using our bletl.growth.fit_mu_t function. This
model describes the data in a generative fashion by first dis-
cretizing time into many segments of exponential growth,
followed by simulating the biomass curve resulting from
a growth rate that drifts over time. For this it assumes an
initial biomass concentration 𝑋0 and a vector of growth
rates 𝜇, calculates biomass concentrations deterministi-
cally and compares them to the observed backscatter using
a calibration model built with the calibr8 package [12].
Parameters 𝑋0 and 𝜇 can be obtained through optimiza-
tion or MCMC. In this analysis we specified a prior belief
in 𝑋0 centered around 0.25 g/L, corresponding to typical
inoculation density for BioLector experiments. The prior
for 𝜇 is a random walk of either a Normal or Students-
t distribution, which pulls the neighboring entries in the
growth rate vector closer to each other, resulting in a
smooth drift of 𝜇𝑡 (Section 2.2.2). While this method
makes few assumptions about the underlying process and
therefore can be applied to many datasets, practitioners
wanting to encode process knowledge should also con-
sider differential-equation based modeling approaches for
which Python packages such as pyFOOMB or murefi can be
applied [12, 32].
To benchmark the objectivity of the method, we gen-

erated a synthetic dataset from a vector of growth
rates (Figure 5 A, B). The comparison of the inference
result with the ground truth (Figure 5) shows that with
the correct calibration model it yields unbiased estimates
of the underlying growth rate. Figure 5 also shows that
the drift_scale parameter can be tuned to reflect an
assumption about the stability of growth rate in themodel.
Low drift_scale constrains the model towards stable
exponential growth and correspondingly narrow uncer-
tainties (Figure 5, C, D). Large drift_scale on the other
hand encodes the prior belief that growth rate is unsta-
ble, leading themodel to infer rather unstable growth rates
withmuchhigher uncertainty (Figure 5, E, F). In the exam-
ple fromFigure 5 a drift scale of 0.0025 gave the best results
and enabled the model to detect all switchpoints without
additional false positives.
In Figure 6 we applied our generative 𝜇𝑡 method to data

from well F02 of the example dataset. The carbon source

composition in this well were three parts fructose, three
parts gluconate and one part lactate, causing a change in
growth phase at around 9.35 h. The orange line shows
the maximum a-posteriori estimate of 𝜇𝑡, obtained by opti-
mization.Automatically detected growth rate switchpoints
are shown as dashed lines. The green density visualizes
the percentiles of the posterior probability distribution of
the biomass concentration (left) and growth rate (right).
The MAP estimate (orange line),is largely in agreement
with the full posterior probability distribution obtained by
MCMC. This similarity of MAP and the full posterior dis-
tribution is not always the case in Bayesian data analysis,
but since the computational runtime to obtain the MAP
estimate (seconds) is around 100x lower compared to the
runtime of a full MCMC parameter estimation (minutes),
it is often the first step when analyzing a new dataset.
The comparison of growth rate over time (right,

orange/green) with dissolved oxygen tension (blue) shows
that both detected switchpoints in the growth rate fall
together with severe changes in the dissolved oxygen con-
centration. The first switch from > 0.4

1

ℎ
to ≈ 0.2

1

ℎ
coin-

cides with a temporary increase in DO, whereas the second
switch from≈ 0.2

1

ℎ
to≈ 0.05

1

ℎ
falls together with the final

rise in oxygen concentration.
One key aspect of growth rate calculation are the

assumptions made about the biomass/backscatter rela-
tionship. The aforementioned 𝜇𝑡 method relies on a cali-
brationmodel of backscatter versus biomass concentration
to simultaneously describe the relationship and measure-
ment noisewith a non-linear calibrationmodel. This raises
the question to what extent growth rate may be quantified
with less sophisticated calibrations.
In Figure 7we compare the results of a “calibration-free”

𝜇(𝑡) spline approach (Section 2.2.2) with the 𝜇𝑡 method
using linear or logistic calibration models. Note that the
“calibration-free” approach also makes the assumption
of a linear relationship between biomass concentration
and backscatter observations, just without specifying the
slope that cancels out in the growth rate calculation (Sec-
tion 2.2.2).
Compared to the alternatives, the growth rate curve

resulting from the spline method exhibits strong oscilla-
tory artifacts at the beginning of the curve, where the
biomass concentration is low. The blue density shows the
results of the generative 𝜇𝑡 method combined with a lin-
ear biomass/backscatter calibration that uses calibration
data up to 6 g/L and fixes the intercept to a blank value.
This model can still detect the switchpoints, but is biased
towards considerably higher growth rates (blue). In con-
trast, a linear calibration with 6–30 g/L that does not fix
the intercept parameter to a blank value leads to a strong
under-estimation of the growth rate, largely explained by



254 OSTHEGE et al.

F IGURE 5 Inference of growth rate from a synthetic dataset. A vector of growth rates (A) exhibiting switchpoints and a smooth
fluctuation was used to simulate biomass concentrations (not shown) and corresponding backscatter observations (B). The magnitude of the
drift_scale parameter (scale of the Students-t distribution in the random walk) effects stability, switchpoint detection and uncertainty
(C-F), but in all cases the model fit is unbiased compared to the ground truth. Small drift_scale settings constrain the model to stable
growth rates, which are inferred with little uncertainty (C, D). Large drift_scale allows for larger variance in the growth rate, leading to
more uncertainty and fewer automatically detected switchpoints (E, F). The green density bands visualize the posterior probability density,
with dashed lines marking the 5 and 95% percentiles

the lack of fit error of the calibration model (Figure S1).
For detailed guidance on the construction and diagnosis of
calibration models we refer to [12].
The strength of non-linearities in the

biomass/backscatter relationship may depend on
the BioLector model and device at hand, but from
Figure 7 we must conclude that a realistic, unbiased
biomass/backscatter calibration is indispensable. Such

a calibration is not necessarily non-linear, but when
quantitative estimates of specific growth rates are desired,
practitioners should first perform a thorough acquisition
of calibration data before committing to a possibly biased
model. Due to the availability of computational fast, unbi-
ased growth rate quantification with the 𝜇𝑡 method, we
found no convincing advantages of spline-based growth
rate estimation.



OSTHEGE et al. 255

F IGURE 6 Model prediction of variable growth rate. Biomass concentrations inferred from backscatter observations (A) are well
explained by the drift of specific growth rate over time (B). At two timesteps the specific growth rate changed significantly, which resulted in
the automatic detection of switchpoints (vertical dashed orange lines). These switchpoints in 𝜇𝑡 at 9.35 and 10.65 h coincide with changes in
the Dissolved Oxygen (DO), indicating a change in cell metabolism. The green density bands visualize the posterior probability density, with
dashed lines marking the 5 and 95% percentiles

F IGURE 7 Comparison of growth rate calculation methods. Spline-based 𝜇(𝑡) growth rate calculation based on blank subtraction
(orange) yields a point estimate that fluctuates considerably compared to the “gold standard” of the generative 𝜇𝑡 method with detailed
biomass/backscatter calibration (green). When the generative method is used with linear calibration models, the choice of calibration
concentrations and the decision for (blue) or against (red) fixing the intercept at a blank backscatter has considerable effects on the quality of
the outcome. The density bands visualize the posterior probability density, with dashed lines marking the 5 and 95 % percentiles

3.4 Time series feature extraction

It was previously shown that high-resolution timeseries of
culture backscatter can be correlated with product mea-
surements through the use of dimension-reduction tech-

niques and regression models [13]. With bletl.features
we provide an implementation for configurable and auto-
mated extraction of large numbers of features from bio-
process timeseries data. These features may be used as the
input to a broad spectrum of machine learning pipelines



256 OSTHEGE et al.

F IGURE 8 t-SNE from extracted time series features. Small tiles in subplots BS3, pH and DO correspond to culture wells and were
arranged according to the t-SNE result. The time series inside were truncated at the time of harvest. As with any t-SNE visualization, the
large-scale arrangement, rotation or axis units are meaningless, since the technique prioritizes local structure. Note that tiles arranged in
close proximity are have similar time series characteristics in all three filtersets. For comparison, a t-SNE embedding of 48 random
handwritten 1/2/3 digits from the MNIST dataset is shown in the lower right

making use of techniques such as dimension reduction,
regression, unsupervised visualization or clustering.
To demonstrate how one might use these methods,

we applied feature extraction and t-SNE to the previ-
ously introduced dataset to obtain a visualization of local
structures in the high-dimensional data. Probably the
most popular example of a t-SNE visualization are two-
dimensional embeddings of the MNIST handwritten digit
dataset. Already with just 48 images from the MNIST
dataset, t-SNE can find a two-dimensional arrangement of
the 784-dimensional (28 x 28 pixel) records that recovers
local similarities between the digits (Figure 8).
However, time series frommicrobioreactors are typically

of unequal length and therefore cannot be fed into the t-
SNE algorithm directly. In a preprocessing step the time
series must first be transformed into a fixed number of
features. For this demonstration example we extracted ini-
tially 2343 features from the full dataset using both biolog-

ically motivated, as well as the statistical time series fea-
ture extractors. The t-SNE visualization shown in Figure 8
was then prepared from a cleaned set of 1282 features (Sec-
tion 2.2.3).
Note that the experiment for this application example

was purposely designed to not create clusters by, for exam-
ple, including multiple replicates of the same medium
design. Instead, the randomly distributed medium designs
were intended to result in growth phenotypes that can be
morphed into each other. And indeed there are examples
of such morphing in Figure 8, for example the records
in the lower-left are arranged by the strength of the DO-
minimum. Nevertheless, the coloring of the embedding
by carbon source composition (Figure 9) reveals that the
t-SNE arrangement is strongly correlated with the pres-
ence of gluconate, glutamate and particularly lactate in the
cultivation supernatant. Hence, without investigating the
metabolic details, the application of unsupervisedmachine



OSTHEGE et al. 257

F IGURE 9 t-SNE embedding colored by carbon sources. The color intensity encodes the amount of carbon provided via each of the
eight carbon sources. Note that with the exception of one well containing 100 % glucose (dark blue, center right) each well contains three
carbon sources. Almost all wells that included lactate as a carbon source are closely arranged in the t-SNE embedding, indicating that they are
in close proximity in the high dimensional feature space. Likewise, gluconate or glutamate containing wells are closely arranged. In contrast,
none of the monomeric or dimeric sugars lead to characteristic BS/pH/DO phenotypes

learning methods to this BioLector dataset recovered local
similarities and revealed that presence of lactate in the
medium lead to a distinctive growth phenotype.
The observation that a t-SNE of extracted time series fea-

tures does not only recover similarities between individual
wells, but also aspects of the experiment design shows that
our feature extraction is a viable solution to make BioLec-
tor datasets amenable to machine learning methods. In
contrast to the extraction of manually engineered features
[13], our feature extraction workflow works out of the box
and with few lines of code. The example from Figure 8
shows that t-SNE can readily deal with large numbers
of feature dimensions, even when there are few records
in the dataset. Other machine learning methods however
may need redundant features to be removed, for which
dimension reduction techniques such as linear discrimi-
nant analysis could be applied.

4 CONCLUDING REMARKS

As we elaborated on in Section 1, bletl is the first (pub-
licly available) Python package to parse and process raw
BioLector datasets entirely, without dropping potentially
relevant metadata. With the examples in Section 3.1 we
showed how bletl thereby makes BioLector datasets
accessible to standard Python-based data analysis work-
flows. The switch to Python-based data processing facil-

itates not only interactive and robust data analysis, but
also enables the application of machine learning tech-
niques such as crossvalidated smoothing splines to BioLec-
tor datasets. Nevertheless, many scientists who are not yet
proficient in Python-based data analysis workflows might
be concerned with the initial complexity of the learning
curve. That is one of the reasons why the documentation
of the bletl package comes with ready-to-use examples.
The code of the library is thoroughly tested in automated
test pipelines to reduce the chance of unexpected failures.
In Section 3.2 we characterized two strategies for

smoothing noisy on-line signals and showed that subtle
differences in implementation can have substantial con-
sequences on the results. This again highlights the need
for standardized data structures, robust data analysis rou-
tines and thoroughly tested, open-sourced implementa-
tions that are distributed through versioned releases. Com-
pared to the state of the art in bioprocess research (see
Section 1) where data analysis scripts are seldomly pub-
lished and rarely versioned, the analysis submodule of our
bletl package provides generally applicable, transparent
and characterized implementations.
For the analysis of specific growth rate under not nec-

essarily unlimited exponential growth conditions, we pre-
sented a random-walk based 𝜇𝑡 model that can also detect
switchpoints automatically. Within seconds our method
determines time-variable growth rates by optimization and
by leveraging state of the art probabilistic machine learn-



258 OSTHEGE et al.

ing, it also quantifies Bayesian uncertainties. We showed
on a synthetic dataset that the method is not only unbi-
ased, but also offers the practitioner a tuning knob for the
bias-variance tradeoff between narrow uncertainties and
growth rate flexibility (Figure 5). While randomwalks and
cumulative sums are well established methods for time
series changepoint detection in other fields [20–22], we
found no instances where this method was applied in the
context of specific growth rate estimation. Furthermore,
most prior work uses normally distributed random walks,
while we have found Student-t random walks to yield
much clearer results.
In comparison with alternative approaches we found

that while analyses with less exact, or even without cali-
bration models may still find the same general trends, a
quantitative statement about specific growth rate can only
be made with accurate calibrations Figure S1. Observing
the popularity of growth rate determination in the biopro-
cess research community, we view our 𝜇𝑡 as an important
contribution to improve objectivity and reproducibility of
this metric. Nevertheless, we would like to remind that
with some organisms the biomass/backscatter relationship
can depend on morphology, requiring much more sophis-
ticated models, or even making it infeasible to determine
growth rate from backscatter at all.
With Section 3.4 we presented a generally applica-

ble method to extract features for machine learning
applications from time series data of microbioreactor
experiments. By visualizing the high-dimensional time
series features with t-SNE we showed that the features
indeed have the information content needed to recon-
struct patterns from the experimental design. The visual-
ization of a high-dimensional BioLector dataset in a two-
dimensional arrangement that maintains local structure
(Figure 8) is just one example of how our bletl package
enriches the exploratory data analysis of microbioreactor
experiments.
Overall we conclude that Python packages to parse

experimental data into standardized data structures are a
valuable asset for quantitative, qualitative and exploratory
research. As of today, bletl is only able to handle data
from BioLector devices. However, it can be extended
to other microcultivation devices by implementing addi-
tional parser classes. We also welcome contributions and
feedback to this open-source project. For example, more
functions for interactive visualizations, tailored to this spe-
cific type of datasets, could be added in the future.

ACKNOWLEDGMENTS
The bletl package was developed by Michael Osthege and
Niklas Tenhaef. The random-walk 𝜇𝑡 method was devised
and implemented by Michael Osthege. Feature extraction
and cross validation routines were prototyped by Rebecca

Zyla using a comprehensive data set provided by Johannes
Hemmerich. The strain and experimental workflow for
the dataset used in this study were produced by Car-
olin Müller. Marco Oldiges, Stephan Noack and Wolf-
gang Wiechert reviewed the manuscript, organized fund-
ing and were responsible for supervision and project coor-
dination. This work was funded by the German Federal
Ministry of Education and Research (BMBF, Grant. No.
031B0463A) as part of the project “Digitalization In Indus-
trial Biotechnology”, DigInBio. Open Access publication
funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 491111487.

CONFL ICT OF INTEREST
The authors have declared no conflict of interest.

DATA AVAILAB IL ITY STATEMENT
The data is openly available in a public repository (https:
//github.com/JuBiotech/bletl-paper) and issued a DOI
(https://doi.org/10.5281/zenodo.5235460).

ORCID
MichaelOsthege https://orcid.org/0000-0002-2734-7624
NiklasTenhaef https://orcid.org/0000-0002-9375-4156
CarolinMüller https://orcid.org/0000-0002-6277-1009
JohannesHemmerich https://orcid.org/0000-0002-
9786-6315
WolfgangWiechert https://orcid.org/0000-0001-8501-
0694
StephanNoack https://orcid.org/0000-0001-9784-3626
MarcoOldiges https://orcid.org/0000-0003-0704-5597

REFERENCES
1. Nielsen J, Keasling JD. Engineering cellular metabolism. Cell.

2016;164(6):1185–1197.
2. Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M. An auto-

mated workflow for enhancing microbial bioprocess optimiza-
tion on a novel microbioreactor platform. Microb Cell Fact.
2012;11(1):1–14.

3. Hemmerich J,Noack S,WiechertW,OldigesM.Microbioreactor
systems for accelerated bioprocess development. Biotechnol J.
2018;13(4):1700141.

4. Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A sys-
tematic evaluation of single cell RNA-seq analysis pipelines. Nat
Commun. 2019;10(1):1–11.

5. Tecan OD Analyzer. https://pypi.org/project/tecan-od-
analyzer/.

6. wellcompare. https://pypi.org/project/wellcompare/.
7. Cruz Bournazou M, Barz T, Nickel D, et al.. Online optimal

experimental re-design in robotic parallel fed-batch cultivation
facilities. Biotechnol Bioeng. 2017;114(3):610–619.

8. Jansen R, Tenhaef N,MochM,WiechertW, Noack S, OldigesM.
FeedER: a feedback-regulated enzyme-based slow-release sys-
tem for fed-batch cultivation in microtiter plates. Bioprocess
Biosyst Eng. 2019;42(11):1843–1852.

https://github.com/JuBiotech/bletl-paper
https://github.com/JuBiotech/bletl-paper
https://doi.org/10.5281/zenodo.5235460
https://orcid.org/0000-0002-2734-7624
https://orcid.org/0000-0002-2734-7624
https://orcid.org/0000-0002-9375-4156
https://orcid.org/0000-0002-9375-4156
https://orcid.org/0000-0002-6277-1009
https://orcid.org/0000-0002-6277-1009
https://orcid.org/0000-0002-9786-6315
https://orcid.org/0000-0002-9786-6315
https://orcid.org/0000-0002-9786-6315
https://orcid.org/0000-0001-8501-0694
https://orcid.org/0000-0001-8501-0694
https://orcid.org/0000-0001-8501-0694
https://orcid.org/0000-0001-9784-3626
https://orcid.org/0000-0001-9784-3626
https://orcid.org/0000-0003-0704-5597
https://orcid.org/0000-0003-0704-5597
https://pypi.org/project/tecan-od-analyzer/
https://pypi.org/project/tecan-od-analyzer/
https://pypi.org/project/wellcompare/


OSTHEGE et al. 259

9. Hemmerich J, Wiechert W, Oldiges M. Automated growth
rate determination inhigh-throughputmicrobioreactor systems.
BMC Res Notes. 2017;10(1):1–7.

10. McKinney W. Data Structures for Statistical Computing in
Python. In: Walt S. v. d, Millman J., eds. Proc 9th Python Sci
CConf. 2010:56-61. https://doi.org/10.25080/Majora-92bf1922-
00a.

11. The pandas development team. pandas-dev/pandas: Pandas.
Version latest. Feb. 2020. DOI: 10.5281/zenodo. 3509134. URL:
https://doi.org/10.5281/zenodo.3509134.

12. Helleckes LM, Osthege M, Wiechert W, Lieres vE, Oldiges M.
Bayesian calibration, process modeling and uncertainty quan-
tification in biotechnology. bioRxiv 2021. https://doi.org/10.1101/
2021.06.30.450546

13. Ladner T, Mühlmann M, Schulte A, Wandrey G, Büchs J. Pre-
diction of Escherichia coli expression performance in microtiter
plates by analyzing only the temporal development of scattered
light during culture. J Biol Eng. 2017;11(1):1–15.

14. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python.
Nat Methods. 2020;17:261–272. https://doi.org/10.1038/s41592-
019-0686-2.

15. Prilepin E. CSAPS - Cubic Spline Approximation (Smoothing).
Version 1.0.4. June 8, 2021. https://github.com/espdev/csaps.

16. Osthege M, Tenhaef N, Helleckes L. JuBiotech/bletl: v1.0.0. Ver-
sion v1.0.0. July 2021. DOI: 10.5281/zenodo.5101435. https://doi.
org/10.5281/zenodo.5101435.

17. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic pro-
gramming in Python using PyMC3. PeerJ Computer Science.
2016;2:e55. DOI: 10.7717/peerj-cs.55. URL: https://doi.org/10.
7717/peerj-cs.55.

18. Salvatier J, Wiecki T, Patil A, et al. pymc-devs/pymc3:
PyMC3 3.11.2 (14 March 2021). Version v3.11.2. Mar. 2021.
DOI: 10.5281/zenodo.4603971. https://doi.org/10.5281/zenodo.
4603971.

19. Schoot v. dR, Depaoli S, King R, et al. Bayesian statistics and
modelling. Nat Rev Methods Primers. 2021;1(1):1–26.

20. Hinkley DV. Inference about the change-point from cumulative
sum tests. Biometrika. 1971;58(3):509-523. ISSN: 0006-3444. DOI:
10.1093/biomet/58.3.509.

21. Lee S,Ha J,NaO,Na S. TheCusumTest for Parameter Change in
Time SeriesModels. Scand J Stat. 2003;30(4):781-796. DOI: https:
//doi.org/10.1111/1467-9469.00364. eprint:

22. Moonesinghe HDK, Tan PN. OutRank: A Graph-based out-
lier detection framework using random walk. Int J Artif
Intell Tools. 2008;17(01):19-36. DOI: https://doi.org/10.1142/
S0218213008003753.

23. Systrom K, Vladek T, Krieger M. Rt.live. https://github.com/
rtcovidlive/covid-model; 2020.

24. Christ M, Braun N, Neuffer J, Kempa-Liehr AW. Time Series
FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh
- A Python package). Neurocomputing. 2018;307:72-77. ISSN:
0925-2312. DOI: https://doi.org/10.1016/j.neucom.2018.03.067.
URL:

25. bletlhttps://bletl.readthedocs.io.
26. Van der Maaten L, Hinton G. Visualizing data using t-

SNE. Journal of Machine Learning Research. 2008;9(11).
https://www.jmlr.org/papers/volume9/vandermaaten08a/
vandermaaten08a.pdf

27. Kobak D, Berens P. The art of using t-SNE for single-cell tran-
scriptomics. Nat Commun. 2019;10(1):1–14.

28. Liu S, Bremer PT, Thiagarajan JJ, et al. Visual exploration of
semantic relationships in neural word embeddings. IEEE Trans
Visual Comput Graphics. 2017;24(1):553–562.

29. Osthege M. JuBiotech/bletl-paper: v1.0.1. Version v1.0.1. Aug.
2021. DOI: 10.5281/zenodo.5235460.

30. Bakkes PJ, Ramp P, Bida A, Dohmen-Olma D, Bott M, Freudl
R. Improved pEKEx2-derived expression vectors for tightly con-
trolled production of recombinant proteins in Corynebacterium
glutamicum. Plasmid. 2020;112:102540. https://doi.org/10.1016/j.
plasmid.2020.102540.

31. Müller C, Igwe CL, Wiechert W, Oldiges M. Scaling produc-
tion of GFP1-10 detector protein in E. coli for secretion screen-
ing by split GFP assay. Microb Cell Fact. 2021;20(1):1–11. https:
//doi.org/10.1186/s12934-021-01672-6.

32. Hemmerich J, Tenhaef N, Wiechert W, Noack S. pyFOOMB:
Python framework for object orientedmodeling of bioprocesses.
Eng Life Sci. 2021;21(3-4):242-257. DOI: https://doi.org/10.1002/
elsc.202000088.

SUPPORT ING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Osthege M, Tenhaef N,
Zyla R. bletl - A Python package for integrating
BioLector microcultivation devices in the
Design-Build-Test-Learn cycle. Eng Life Sci.
2022;22:242–259.
https://doi.org/10.1002/elsc.202100108

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1101/2021.06.30.450546
https://doi.org/10.1101/2021.06.30.450546
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/espdev/csaps
https://doi.org/10.5281/zenodo.5101435
https://doi.org/10.5281/zenodo.5101435
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.5281/zenodo.4603971
https://doi.org/10.5281/zenodo.4603971
https://doi.org/10.1111/1467-9469.00364
https://doi.org/10.1111/1467-9469.00364
https://doi.org/10.1142/S0218213008003753
https://doi.org/10.1142/S0218213008003753
https://github.com/rtcovidlive/covid-model
https://github.com/rtcovidlive/covid-model
https://doi.org/10.1016/j.neucom.2018.03.067
https://bletl.readthedocs.io
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.1016/j.plasmid.2020.102540
https://doi.org/10.1016/j.plasmid.2020.102540
https://doi.org/10.1186/s12934-021-01672-6
https://doi.org/10.1186/s12934-021-01672-6
https://doi.org/10.1002/elsc.202000088
https://doi.org/10.1002/elsc.202000088
https://doi.org/10.1002/elsc.202100108

	bletl - A Python package for integrating BioLector microcultivation devices in the Design-Build-Test-Learn cycle
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Core package
	2.1.1 | Parsing and data structures

	2.2 | Analysis methods
	2.2.1 | Spline approximations
	2.2.2 | Growth rate analysis
	2.2.3 | Feature extraction
	2.2.4 | Visualization by t-SNE

	2.3 | Media and cultivation conditions

	3 | RESULTS AND DISCUSSION
	3.1 | Basic visualization workflow
	3.2 | Splines for time series smoothing and derivatives
	3.3 | Growth rate and timeseries analysis
	3.4 | Time series feature extraction

	4 | CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


